
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Classification of Stellar Spectra using KMP and

Levenshtein Distance Algorithm

Guntara Hambali - 13523114

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: guntarahambali3@gmail.com , 13523114@std.stei.itb.ac.id

Abstract— Star classification is a fundamental task in modern

astronomy to understand the physical properties and evolution of

stellar objects. Traditionally, classification relies on identifying

absorption patterns in the stellar spectrum. Since those patterns

appear in a sequence across wavelengths, it opens a possibility to

approach the problem using string pattern matching. String

matching is a computational method that identifies repeated or

target sequences inside a larger sequence. In this paper, we

implement exact and fuzzy string-matching algorithms, the

Knuth-Morris-Pratt (KMP) and Levenshtein distance

algorithms, to identify stellar types based on simplified spectral

pattern. Using simulated data for A, G, and M stars, we test the

both algorithms to classify certain star to a certain spectral type.

Keywords—KMP Algorithm, Levenshtein Distance, Stellar

Classification, Stellar Spectrum, String Matching

I. INTRODUCTION

Star is one of the most fundamental astronomical objects
observed throughout the history of astronomy. Understanding
stars is a milestone to our understanding of the universe, as
stars are major constituents of galaxies and provide clues about
physical laws, time scales, and cosmic evolution. One of the
most important properties of a star is its spectral type, which
reveals its temperature, mass, and chemical composition. The
classification of a star’s spectral type is determined by
analyzing its spectrum—the distribution of light intensity over
different wavelengths—especially the presence and depth of
certain absorption lines caused by various atomic and
molecular species in the stellar atmosphere.

In recent decades, as astronomical observations have
become more data-intensive, new approaches have been
explored to automate spectral classification. Oneway to
approach the problem is to treat the stellar spectrum as a
sequence of values and apply string matching algorithms. This
idea is based on the fact that absorption patterns form
distinguishable sequences of intensity levels across
wavelengths, which can be converted into symbolic
representations. From this perspective, spectral classification
can be reduced as a string pattern matching problem.

Two main algorithms are used in this paper: the Knuth-
Morris-Pratt (KMP) algorithm for exact pattern matching and
Levenshtein distance for fuzzy or approximate matching. The
KMP algorithm is useful when the input spectrum is expected

to closely match a known pattern, while Levenshtein distance
is more tolerant to noise and minor shifts, which useful for
realistic spectra where absorption features may not align
perfectly.

The challenge in this inquiry is the nature of real spectral
data. Public datasets such as those from the Sloan Digital Sky
Survey (SDSS) or LAMOST contain millions of stellar spectra,
but these are complex and often noisy. Furthermore, each
spectrum is high-dimensional and may require significant
preprocessing. For this reason, in this paper, we simulate
simplified stellar spectra based on theoretical absorption lines
found in A, G, and M-type stars. The simulated data serves as a
controlled environment to test the effectiveness of string-
matching methods for spectral classification.

This paper is organized as follows: Section 2 will explain
the theoretical foundation of stellar spectra, including the
physical characteristics of A, G, and M stars. It will also
introduce the string-matching algorithms used in this paper.
Section 3 will describe the implementation, beginning with the
data simulation process, followed by the transformation of
spectral data, and ends with algorithmic evaluation. In section
4, we will see the conclusion of this paper based on evaluation.
Finally, Section 5 recommendations for future research.

II. THEORETICAL BASIS

A. Stellar Spectra Definition

Stellar spectra is the distribution of a star’s emitted

light across different wavelengths. When starlight is passed

through a spectrograph, it is decomposed into its constituent

wavelengths, producing a spectrum that typically consists of a

continuous background with dark absorption lines. These

absorption lines are caused by the interaction of the stellar

radiation with elements in the star’s atmosphere, where specific

wavelengths are absorbed due to electronic transitions in atoms

or molecules. Stellar spectra are essential tools in astrophysics.

They serve as “x-ray” of stars, revealing vital information such

as chemical composition, surface temperature, radial velocity,

surface gravity, and luminosity class of a star. Through analysis

of spectral lines, astronomers can classify stars, study stellar

evolution, and determine distances and motions within the

galaxy.

mailto:guntarahambali3@gmail.com
mailto:13523114@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Harvard Sprectral Classification System

Stellar spectra are traditionally classified into types
according to the Harvard spectral classification system: O, B,
A, F, G, K, and M. These types are ordered from hottest (O) to
coolest (M), and the classification is primarily based on the
strength and nature of certain absorption lines, particularly
hydrogen and various metal lines. The characteristic of each
class is described in the table below:

Spectral

Type

Temperature Range

(K)
Dominant Features

O > 30,000 Ionized helium lines

B 10,000 – 30,000
Neutral helium and strong

H

A 7,500 – 10,000
Strong hydrogen Balmer

lines

F 6,000 – 7,500
Weaker H lines, Ca II

strong

G 5,200 – 6,000
Metal lines (Ca, Fe), H

weak

K 3,700 – 5,200
Strong metal and

molecular bands

M < 3,700
Molecular bands (TiO,

VO)

 This study focuses specifically on spectral types A, G, and
M due to the distinctive and contrasting spectral features they
have. A-type stars, with surface temperatures between 7,500
and 10,000 K, are known for their strong and well-defined
hydrogen Balmer absorption lines, such as Hα (656.3 nm), Hβ
(486.1 nm), and Hγ (434.0 nm). These features make them
particularly suitable for pattern recognition using string
matching algorithms, as the absorption patterns are sharp and
consistent. G-type stars, with temperatures between 5,200 and
6,000 K, represent solar-like stars and are characterized by a
combination of weak hydrogen lines and prominent metal
lines, especially from calcium (e.g., Ca II H and K lines near
393 and 397 nm) and iron. This moderate complexity makes G-
type spectra ideal for evaluating algorithms on mixed-feature
patterns. In contrast, M-type stars have surface temperatures
below 3,700 K and exhibit spectra dominated by complex
molecular absorption, primarily from TiO bands. The spectral
patterns of M-type stars are dense and irregular, providing a
challenging test case for matching algorithms [2]. By selecting
these three types—A, G, and M—the study spans a broad range
of spectral behaviors and complexity, allowing a
comprehensive evaluation of string-matching techniques
applied to stellar spectral data.

 In reality, there are always noises in the spectrum data. In
general, the cause comes from random signals during the
conversion process from analog signals to digital signals. In
addition, extrinsic factors can also come from changes in
thermal signals in conductive materials on the instrument that

can affect the detector's work in capturing. The second factor is
very dependent on the instrument used. Fortunately, both
factors have a typical distribution pattern, namely the Gaussian
distribution. [1]

C. Knuth-Morris-Pratt Algorithm

The Knuth–Morris–Pratt (KMP) algorithm is an string
matching algorithm designed to search for the occurrence of a
pattern string (P) within a larger text string (T) in linear time.
Traditional brute-force matching algorithms often re-examine
characters in the text that have already been compared, leading
to potentially quadratic time complexity in the worst case. In
contrast, KMP avoids redundant comparisons by precomputing
a prefix table (also called the border function), which encodes
the longest proper prefix of the pattern that is also a suffix. This
prefix table is used to determine the next position in the pattern
to resume comparison after a mismatch, allowing the algorithm
to shift the pattern efficiently without rechecking previously
matched characters.

The KMP algorithm operates in two main phases:
preprocessing and searching. In the preprocessing phase, the
prefix table is constructed for the given pattern in O(m) time,
where m is the length of the pattern. This table helps identify
how far the pattern can safely shift after a mismatch. In the
searching phase, the algorithm compares the pattern with the
text from left to right. When a mismatch occurs, the prefix
table is consulted to skip ahead in the pattern without restarting
the comparison from the beginning. The overall time
complexity of the algorithm is O(n+m), where n is the length of
the text and m is the length of the pattern, making it highly
suitable for matching long sequences. [3]

In the context of this study, the KMP algorithm is applied
to pattern matching within stellar spectra that have been
converted into string representations. Specifically, each stellar
spectrum, which originally a sequence of intensity values over
wavelengths, is normalized and transformed into a string
through symbolic binning or scaling. This string can then be
processed as textual data. Characteristic spectral features, such
as absorption patterns unique to A, G, or M-type stars, are
extracted as template patterns. Using KMP, the algorithm
searches for these template patterns within a given input
spectrum string to determine whether a particular stellar type is
present. Since the KMP algorithm is deterministic and exact, it
is particularly effective when matching high-contrast
absorption patterns such as the Balmer lines in A-type stars. Its
efficiency and precision make it well-suited for this simulation-
based study, where the goal is to detect the presence or absence
of distinctive spectral features with minimal computational
overhead.

D. Levenshtein Algorithm

The Levenshtein distance algorithm is a technique used to
quantify the difference between two strings by measuring the
minimum number of edit operations required to transform one
string into another. These operations typically include
insertion, deletion, and substitution of single characters. [4]
Unlike exact string-matching algorithms such as Knuth–
Morris–Pratt (KMP), which only detect perfect matches, the
Levenshtein distance allows for inexact matches by accounting

Table 1. Characteristic of each spectral class

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

for small variations or noise within the data. The algorithm
operates in O(nm) time, where n and m are the lengths of the
two strings, by constructing a matrix that records the optimal
edit distance between every prefix of the source and target
strings. This characteristic makes Levenshtein particularly
valuable in scenarios where the input data may be distorted,
incomplete, or affected by random noise.

In the context of this study, where simulated stellar spectra
are converted into discrete strings for classification, the
Levenshtein distance is used to measure similarity between a
target spectrum and known spectral templates of types A, G,
and M. Because stellar spectra, even when simulated, may
exhibit slight variations in intensity, line width, or line position
due to instrumental or observational factors, relying solely on
exact matches (as in KMP) could lead to misclassification.
Levenshtein distance, on the other hand, enables the algorithm
to tolerate small shifts, distortions, or noise in the spectral
pattern while still recognizing its overall structure. This
flexibility makes it advantageous for comparing complex or
irregular patterns such as those found in M-type spectra, which
often contain overlapping molecular bands. While the
computational cost of Levenshtein is higher than KMP, its
ability to quantify similarity rather than demand perfection
provides a more robust and adaptable solution for the task of
identifying stellar types based on spectral pattern matching.
This approach enhances the accuracy of classification in
situations where the spectrum may not be ideally clean or when
comparing different stars within the same spectral class.

E. Spectrum Data Representation

To apply string matching algorithms to stellar spectra, it is
first necessary to convert the analog spectral data into a digital
format that can be processed algorithmically. A stellar
spectrum is originally recorded as a continuous function
representing light intensity as a function of wavelength,
typically across the visible spectrum range of approximately
400–700 nanometers. This data is sampled into discrete points
to form an array of intensity values, each corresponding to a
specific wavelength interval. In order to utilize string-based
algorithms such as Knuth–Morris–Pratt (KMP) and
Levenshtein distance, these numerical sequences must be
transformed into symbolic strings.

There are two principal approaches to digital
representation: scaling to digits and symbolic binning. In the
first approach, intensity values are multiplied by a constant
scaling factor (e.g., 100) and rounded to the nearest integer,
resulting in a sequence of numeric characters (e.g., 0.86 →
"86"). These digit sequences are then concatenated into a single
string, preserving relative intensity patterns while enabling
character-wise comparison. The second approach involves
binning the intensity values into qualitative categories—such
as ‘A’, ‘B’, ‘C’, and ‘D’—based on predefined intensity
thresholds. This symbolic representation reduces sensitivity to
minor fluctuations and is especially useful for handling noise or
variation in line depth and width. For instance, high-intensity
regions may be labeled ‘A’, while deep absorption lines may
be categorized as ‘D’, creating a discrete symbolic pattern that
captures the general shape of the spectrum. In this paper, we

will use the second method because it is more robust to tolerate
the noise or redshift.

This transformation process enables stellar spectra to be
treated as sequences of characters, which can then be compared
using classical string-matching algorithms. It preserves the key
structural features of the spectrum such as the position and
depth of absorption lines while abstracting away the precise
numerical values that are often affected by observational noise.

III. IMPLEMENTATION AND RESULT ANALYSIS

A. Problem Mapping

To implements their spectrum, we must understand that

stellar spectra are composed of:

• Wavelength (λ): A sequence of values, usually in

nanometers (nm), representing the position of light in

the electromagnetic spectrum (e.g., 400–700 nm for

visible light).

• Intensity (I): A normalized value (between 0 and 1)

that represents how much light is received at each

wavelength. Absorption lines appear as dips in this

intensity.

Each star type (e.g., A, G, M) has characteristic absorption

lines, defined by:

• Center wavelength (λ₀): The position of the line.

• Amplitude: How deep the line dips below the

continuum.

• Width: How broad the line spreads around λ₀.

Our goal is to simulate this data. After simulating the

spectral data as continuous intensity values over a range of

wavelengths, the next crucial step is to transform this

numerical data into symbolic form. This transformation is

necessary because string matching algorithms such as KMP

and Levenshtein distance operate on sequences of discrete

characters.

To achieve this, the intensity values of the spectrum are

discretized into bins, where each bin represents a range of

normalized intensity values. The idea is rooted in the

observation that absorption features appear as intensity dips in

the spectrum, and these dips can be categorized by their depth.

Last, we can then apply the algorithm into the transformed

data.

B. Data Simulation

Before applying string matching algorithms to classify

stellar types based on their spectra, we must first have the

spectral data that reflects the properties of different types of

stars. Unfortunately, obtaining a comprehensive set of real

observational spectra that covers a wide and controlled variety

of stellar types presents several challenges. While large-scale

surveys such as SDSS and LAMOST have produced millions

of stellar spectra, these datasets are still limited in terms of

their representativeness for algorithmic experimentation. Real

spectra vary in resolution, are affected by redshift and

instrumental noise, and often contain incomplete or

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

ambiguous features due to observational constraints. More

importantly, observational datasets rarely provide clean, ideal

examples of each spectral class under uniform conditions,

which makes them unsuitable as a baseline for evaluating

algorithmic pattern recognition.

There are thus two main difficulties in using real-world

spectral data for this purpose. First, the data is often too large

and complex to be processed directly using lightweight

symbolic algorithms without heavy preprocessing or

dimensionality reduction. Second, it is not structured in a way

that supports controlled comparisons, since real spectra

introduce noise, shifting features, and overlapping

characteristics that make it difficult to isolate specific spectral

types for evaluation. Fortunately, stellar spectra are governed

by well-understood physical laws which can be used to

generate synthetic spectra that represent real observations in

idealized conditions. These simulations can be scaled and

structured precisely to reflect the defining features of A, G,

and M-type stars as described in the theoretical section.

Therefore, in this inquiry, we simulate the spectral data

using models that reflect the typical absorption behavior of the

chosen stellar types. This enables us to create a dataset that is

both representative of real stellar spectra and sufficiently

simplified for algorithmic analysis, without the complications

introduced by observational variability.

To generate synthetic stellar spectra that resemble real

observations, this study constructs each spectrum as a

normalized continuum with absorption features. These

features are mathematically modeled using Gaussian profiles,

which approximate the shape and behavior of spectral

absorption lines found in stellar atmospheres. The function

responsible for generating each individual absorption line is

defined as follows:

def gaussian_absorption(wl, center,

amplitude, width):

 return 1 - amplitude * np.exp(-0.5 *

((wl - center) / width) ** 2))

This function takes as input an array of wavelengths (wl), the

central wavelength of the line (center), the amplitude (how

deep the absorption line dips), and the width (how broadly the

feature spreads). It returns an intensity curve where a

Gaussian-shaped dip is subtracted from a baseline intensity of

1, to simulate how light is absorbed at specific wavelengths in

a star’s atmosphere.

The full spectrum of a given star type is generated using the

following function:

def simulate_star_spectrum(wl_range,

lines, noise=0.005):

 wl = np.linspace(*wl_range, 1000)

 spectrum = np.ones_like(wl)

 for line in lines:

 center, amp, width = line

 spectrum *=

gaussian_absorption(wl, center, amp,

width)

 spectrum += np.random.normal(0,

noise, wl.shape)

 return wl, spectrum

This function begins by creating an evenly spaced wavelength

array wl (which its value when called will be from 400 to 700

to represent visible light spectrum). A flat continuum

(spectrum) is initialized with intensity values of 1.0 across all

wavelengths. Then, for each absorption line defined in the

lines list, the gaussian_absorption function is applied

multiplicatively to the spectrum. This models the cumulative

effect of all absorption lines on the continuum. Finally,

Gaussian noise is added to each intensity value, simulating the

random variations and imperfections commonly observed in

real astronomical instruments.

Then, based on theoretical basis, there are unique criteria for

each spectrum class, which represent the chemical contents of

a star.

a_type_lines = [

 (656.3, 0.4, 1),

 (486.1, 0.3, 1.2),

 (434.0, 0.2, 1.5)

]

g_type_lines = [

 (589.0, 0.15, 0.8),

 (517.0, 0.1, 0.6),

 (486.1, 0.1, 1.2)

]

m_type_lines = [

 (705.0, 0.2, 2),

 (620.0, 0.15, 2),

 (575.0, 0.15, 1.5)

]

Using all functions made above, we then call the

simulate_star_spectrum function

wl_range = (400, 700)

wl, spec_A =

simulate_star_spectrum(wl_range,

a_type_lines)

_, spec_G =

simulate_star_spectrum(wl_range,

g_type_lines)

_, spec_M =

simulate_star_spectrum(wl_range,

m_type_lines)

The simulated data can be visualized as:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. Spectral Data Transformation

To apply string matching to the spectral data, we should
transform the data. This technique, often referred to as
symbolic representation, converts continuous spectral data into
a string composed of discrete symbols representing varying
levels of absorption. We implement this as follows:

def

stringify_spectrum_bins(intensity_array):

 def bin_intensity(i):

 if i > 0.9: return 'A'

 elif i > 0.8: return 'B'

 elif i > 0.7: return 'C'

 else: return 'D'

 return ''.join(bin_intensity(i) for

i in intensity_array)

The function defines bin_intensity(i), a nested classification
function that maps each intensity value i to a symbol: 'A' for
high intensity (i.e., minimal absorption), 'B' for mild
absorption, 'C' for moderate absorption, and 'D' for deep
absorption. Specifically, the binning thresholds are defined as
follows: 'A' for values above 0.9, 'B' for 0.8–0.9, 'C' for 0.7–
0.8, and 'D' for values less than or equal to 0.7. These threshold
values is a heuristic discretization of the normalized intensity
scale, where 1.0 represents the continuum (no absorption) and
values closer to 0 indicate stronger line absorption. The
function processes the entire intensity_array.

D. Knuth-Morris-Pratt Algorithm Implementation

After transforming the spectral data, we then can implement
the Knuth-Morris-Pratt Algorithm. First, we generate the
border function:

def generate_border_function(pattern):

border_function = [0] * len(pattern)

length = 0

i = 1

while i < len(pattern):

 if pattern[i] == pattern[length]:

 length += 1

 border_function[i] = length

 i += 1

 else:

 if length != 0:

 length = border_function[length -

1]

 else:

 border_function[i] = 0

 i += 1

return border_function

Then, we implement the KMP algorithm like this:

def kmp_search(text, pattern):

border_function=

generate_border_function(pattern)

i = j = 0

while i < len(text):

 if text[i] == pattern[j]:

 i += 1

 j += 1

 if j == len(pattern):

 return i - j

 elif i < len(text) and text[i] !=

pattern[j]:

 if j != 0:

 j = border_function[j - 1]

 else:

 i += 1

return -1

Last, we can use use the the kmp_search we made before as
follows:

input_str=

transform_spectrum(crop_spectrum(wl,

spec_A, 480, 10))

pattern_str=

transform_spectrum(crop_spectrum(wl,

spec_A, 486.1, 1))

print("Input :", input_str)

print("Pattern:", pattern_str)

found= kmp_search(input_str, pattern_str

)

if found != -1:

 print("Pattern found at index", found)

else:

 print("Pattern not found."

The result is:

Input:

AAA

AAAAAABBBCCDCCCCBBAAAAAAA

Pattern: CCDCCCC

Pattern found at index 50

Fig 1. Simulated Stellar Spectra

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

E. Levenshtein Algorithm Implementation

We then now can apply the Levenshtein algorithm to search
(fuzzy match) the pattern of G spectral type stellar in the
simulated data of A spectral type stellar.

_, spec_G = simulate_star_spectrum((400,

700), g_type_lines)

pattern_G =

transform_spectrum(crop_spectrum(wl,

spec_G, 486.1))

input_str = transform_spectrum(snippet)

score = levenshtein(input_str, pattern_G)

print("Similarity to G-type:", score)

The output is as follows:

Similarity to G-type: 0.33962264150943394

It means that the simulated data is not really similar to G
spectral type stellar which as we expected. Now, we use the
same way but now the simulated data is of G spectral type
stellar. The outpus shows as follows:

Similarity to G-type: 0.7547169811320755

It means that the simulated data is similar to G spectral type
stellar which we expected.

IV. CONCLUSION

From the implementation of the string-matching strategy,
the KMP algorithm successfully identified the target spectral
pattern CCDCCCC which represents the absorption profile of a
G-type star at index 50 within the symbolic spectrum of a
simulated G-type star. This confirms that exact pattern
matching can detect distinct spectral fingerprints under ideal
conditions. For a more tolerant evaluation, the Levenshtein
distance algorithm was applied. When comparing the symbolic
spectrum of an A-type star to the G-type pattern, the resulting
similarity was only 33.96%, whereas the G-type star's
similarity to the same pattern reached 75.47%. This significant
difference confirms the capability of Levenshtein algorithm to
distinguish between spectral types even in the presence of noise
and overlapping features. Therefore, it can be concluded that
this inquiry successfully demonstrates the feasibility of using
string matching algorithms for stellar spectral classification.
Further development and evaluation with more diverse patterns
and real data will be discussed in the next section.

V. RECOMMENDATION

Based on the simulated spectra, string matching algorithms
such as KMP and Levenshtein distance were able to distinguish
stellar spectral types by identifying characteristic absorption
patterns. It will be a development in further research if we
apply this method to real spectral data from astronomical

surveys such as SDSS or LAMOST. That research would serve
as a verification of this paper—whether the symbolic matching
strategy remains valid under real observational noise and
spectral resolution. After all, using real spectra will require
additional steps, especially in preprocessing and normalization
to convert raw data into symbolic form. Further research on
optimizing the stringification process or learning the symbolic
bins automatically from data would also be a valuable
recommendation for future refinement.

VI. CLOSING STATEMENT

The author would like to thank the entire academic

community who have organized the Strategi Algoritma

lectures for the 2024/2025 Informatics Engineering class of

the Bandung Institute of Technology. Especially to the

lecturer, Mr. Rinaldi Munir and all the assistants of the

Innovation and Computational Engineering (IRK) laboratory.

The author realizes that there are still many shortcomings in

this study. Therefore, this study is very open to all kinds of

constructive criticism and suggestions. The author is also open

to any intention to collaborate in developing this research.

REFERENCES

[1] W. D. Pence, R. L. White, and A. S. Greenfield, "Lossless Astronomical

Image Compression and the Effects of Noise," Publications of the

Astronomical Society of the Pacific, vol. 121, no. 877, pp. 441–458,

2009, doi: 10.1086/599023.

[2] "Harvard Spectral Classification,” Swinburne University of Technology

[Online]. Available: https://www.geeksforgeeks.org/dsa/introduction-to-

levenshtein-distance/ . [Accessed on: Jun. 24, 2025, 19:30].

[3] Munir, Rinaldi. (2025), “Pencocokan string (string matching) dengan

algoritma brute force, KMP, Boyer-Moore)”. [Accessed on: Jun. 24,

2025, 19:00].

[4] "Introduction to Levenshtein distance," geeksforgeeks[Online].

Available:

https://astronomy.swin.edu.au/cosmos/h/harvard+spectral+classification

.[Accessed on: Jun. 24, 2025, 19:20].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

 Bandung, 24 Juni 2025

Guntara Hambali - 13523114

https://www.geeksforgeeks.org/dsa/introduction-to-levenshtein-distance/
https://www.geeksforgeeks.org/dsa/introduction-to-levenshtein-distance/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-Pencocokan-string-(2025).pdf
https://astronomy.swin.edu.au/cosmos/h/harvard+spectral+classification

