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Abstract— Star classification is a fundamental task in modern 

astronomy to understand the physical properties and evolution of 

stellar objects. Traditionally, classification relies on identifying 

absorption patterns in the stellar spectrum. Since those patterns 

appear in a sequence across wavelengths, it opens a possibility to 

approach the problem using string pattern matching. String 

matching is a computational method that identifies repeated or 

target sequences inside a larger sequence. In this paper, we 

implement exact and fuzzy string-matching algorithms, the 

Knuth-Morris-Pratt (KMP) and Levenshtein distance 

algorithms, to identify stellar types based on simplified spectral 

pattern. Using simulated data for A, G, and M stars, we test the 

both algorithms to classify certain star to a certain spectral type. 

Keywords—KMP Algorithm, Levenshtein Distance, Stellar 

Classification, Stellar Spectrum, String Matching 

I.  INTRODUCTION 

Star is one of the most fundamental astronomical objects 
observed throughout the history of astronomy. Understanding 
stars is a milestone to our understanding of the universe, as 
stars are major constituents of galaxies and provide clues about 
physical laws, time scales, and cosmic evolution. One of the 
most important properties of a star is its spectral type, which 
reveals its temperature, mass, and chemical composition. The 
classification of a star’s spectral type is determined by 
analyzing its spectrum—the distribution of light intensity over 
different wavelengths—especially the presence and depth of 
certain absorption lines caused by various atomic and 
molecular species in the stellar atmosphere. 

In recent decades, as astronomical observations have 
become more data-intensive, new approaches have been 
explored to automate spectral classification. Oneway to 
approach the problem is to treat the stellar spectrum as a 
sequence of values and apply string matching algorithms. This 
idea is based on the fact that absorption patterns form 
distinguishable sequences of intensity levels across 
wavelengths, which can be converted into symbolic 
representations. From this perspective, spectral classification 
can be reduced as a string pattern matching problem. 

Two main algorithms are used in this paper: the Knuth-
Morris-Pratt (KMP) algorithm for exact pattern matching and 
Levenshtein distance for fuzzy or approximate matching. The 
KMP algorithm is useful when the input spectrum is expected 

to closely match a known pattern, while Levenshtein distance 
is more tolerant to noise and minor shifts, which useful for 
realistic spectra where absorption features may not align 
perfectly. 

The challenge in this inquiry is the nature of real spectral 
data. Public datasets such as those from the Sloan Digital Sky 
Survey (SDSS) or LAMOST contain millions of stellar spectra, 
but these are complex and often noisy. Furthermore, each 
spectrum is high-dimensional and may require significant 
preprocessing. For this reason, in this paper, we simulate 
simplified stellar spectra based on theoretical absorption lines 
found in A, G, and M-type stars. The simulated data serves as a 
controlled environment to test the effectiveness of string-
matching methods for spectral classification. 

This paper is organized as follows: Section 2 will explain 
the theoretical foundation of stellar spectra, including the 
physical characteristics of A, G, and M stars. It will also 
introduce the string-matching algorithms used in this paper. 
Section 3 will describe the implementation, beginning with the 
data simulation process, followed by the transformation of 
spectral data, and ends with algorithmic evaluation. In section 
4, we will see the conclusion of this paper based on evaluation. 
Finally, Section 5 recommendations for future research. 

II. THEORETICAL BASIS 

A. Stellar Spectra Definition 

Stellar spectra is the distribution of a star’s emitted 

light across different wavelengths. When starlight is passed 

through a spectrograph, it is decomposed into its constituent 

wavelengths, producing a spectrum that typically consists of a 

continuous background with dark absorption lines. These 

absorption lines are caused by the interaction of the stellar 

radiation with elements in the star’s atmosphere, where specific 

wavelengths are absorbed due to electronic transitions in atoms 

or molecules. Stellar spectra are essential tools in astrophysics. 

They serve as “x-ray” of stars, revealing vital information such 

as chemical composition, surface temperature, radial velocity, 

surface gravity, and luminosity class of a star. Through analysis 

of spectral lines, astronomers can classify stars, study stellar 

evolution, and determine distances and motions within the 

galaxy.  
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B. Harvard Sprectral Classification System 

Stellar spectra are traditionally classified into types 
according to the Harvard spectral classification system: O, B, 
A, F, G, K, and M. These types are ordered from hottest (O) to 
coolest (M), and the classification is primarily based on the 
strength and nature of certain absorption lines, particularly 
hydrogen and various metal lines. The characteristic of each 
class is described in the table below: 

 

Spectral 

Type 

Temperature Range 

(K) 
Dominant Features 

O > 30,000 Ionized helium lines 

B 10,000 – 30,000 
Neutral helium and strong 

H 

A 7,500 – 10,000 
Strong hydrogen Balmer 

lines 

F 6,000 – 7,500 
Weaker H lines, Ca II 

strong 

G 5,200 – 6,000 
Metal lines (Ca, Fe), H 

weak 

K 3,700 – 5,200 
Strong metal and 

molecular bands 

M < 3,700 
Molecular bands (TiO, 

VO) 

 

 This study focuses specifically on spectral types A, G, and 
M due to the distinctive and contrasting spectral features they 
have. A-type stars, with surface temperatures between 7,500 
and 10,000 K, are known for their strong and well-defined 
hydrogen Balmer absorption lines, such as Hα (656.3 nm), Hβ 
(486.1 nm), and Hγ (434.0 nm). These features make them 
particularly suitable for pattern recognition using string 
matching algorithms, as the absorption patterns are sharp and 
consistent. G-type stars, with temperatures between 5,200 and 
6,000 K, represent solar-like stars and are characterized by a 
combination of weak hydrogen lines and prominent metal 
lines, especially from calcium (e.g., Ca II H and K lines near 
393 and 397 nm) and iron. This moderate complexity makes G-
type spectra ideal for evaluating algorithms on mixed-feature 
patterns. In contrast, M-type stars have surface temperatures 
below 3,700 K and exhibit spectra dominated by complex 
molecular absorption, primarily from TiO bands. The spectral 
patterns of M-type stars are dense and irregular, providing a 
challenging test case for matching algorithms [2]. By selecting 
these three types—A, G, and M—the study spans a broad range 
of spectral behaviors and complexity, allowing a 
comprehensive evaluation of string-matching techniques 
applied to stellar spectral data.  

 In reality, there are always noises in the spectrum data. In 
general, the cause comes from random signals during the 
conversion process from analog signals to digital signals. In 
addition, extrinsic factors can also come from changes in 
thermal signals in conductive materials on the instrument that 

can affect the detector's work in capturing. The second factor is 
very dependent on the instrument used. Fortunately, both 
factors have a typical distribution pattern, namely the Gaussian 
distribution. [1] 

C. Knuth-Morris-Pratt Algorithm 

The Knuth–Morris–Pratt (KMP) algorithm is an string 
matching algorithm designed to search for the occurrence of a 
pattern string (P) within a larger text string (T) in linear time. 
Traditional brute-force matching algorithms often re-examine 
characters in the text that have already been compared, leading 
to potentially quadratic time complexity in the worst case. In 
contrast, KMP avoids redundant comparisons by precomputing 
a prefix table (also called the border function), which encodes 
the longest proper prefix of the pattern that is also a suffix. This 
prefix table is used to determine the next position in the pattern 
to resume comparison after a mismatch, allowing the algorithm 
to shift the pattern efficiently without rechecking previously 
matched characters. 

The KMP algorithm operates in two main phases: 
preprocessing and searching. In the preprocessing phase, the 
prefix table is constructed for the given pattern in O(m) time, 
where m is the length of the pattern. This table helps identify 
how far the pattern can safely shift after a mismatch. In the 
searching phase, the algorithm compares the pattern with the 
text from left to right. When a mismatch occurs, the prefix 
table is consulted to skip ahead in the pattern without restarting 
the comparison from the beginning. The overall time 
complexity of the algorithm is O(n+m), where n is the length of 
the text and m is the length of the pattern, making it highly 
suitable for matching long sequences. [3] 

In the context of this study, the KMP algorithm is applied 
to pattern matching within stellar spectra that have been 
converted into string representations. Specifically, each stellar 
spectrum, which originally a sequence of intensity values over 
wavelengths, is normalized and transformed into a string 
through symbolic binning or scaling. This string can then be 
processed as textual data. Characteristic spectral features, such 
as absorption patterns unique to A, G, or M-type stars, are 
extracted as template patterns. Using KMP, the algorithm 
searches for these template patterns within a given input 
spectrum string to determine whether a particular stellar type is 
present. Since the KMP algorithm is deterministic and exact, it 
is particularly effective when matching high-contrast 
absorption patterns such as the Balmer lines in A-type stars. Its 
efficiency and precision make it well-suited for this simulation-
based study, where the goal is to detect the presence or absence 
of distinctive spectral features with minimal computational 
overhead. 

D. Levenshtein Algorithm 

The Levenshtein distance algorithm is a technique used to 
quantify the difference between two strings by measuring the 
minimum number of edit operations required to transform one 
string into another. These operations typically include 
insertion, deletion, and substitution of single characters. [4] 
Unlike exact string-matching algorithms such as Knuth–
Morris–Pratt (KMP), which only detect perfect matches, the 
Levenshtein distance allows for inexact matches by accounting 

Table 1. Characteristic of each spectral class 
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for small variations or noise within the data. The algorithm 
operates in O(nm) time, where n and m are the lengths of the 
two strings, by constructing a matrix that records the optimal 
edit distance between every prefix of the source and target 
strings. This characteristic makes Levenshtein particularly 
valuable in scenarios where the input data may be distorted, 
incomplete, or affected by random noise. 

In the context of this study, where simulated stellar spectra 
are converted into discrete strings for classification, the 
Levenshtein distance is used to measure similarity between a 
target spectrum and known spectral templates of types A, G, 
and M. Because stellar spectra, even when simulated, may 
exhibit slight variations in intensity, line width, or line position 
due to instrumental or observational factors, relying solely on 
exact matches (as in KMP) could lead to misclassification. 
Levenshtein distance, on the other hand, enables the algorithm 
to tolerate small shifts, distortions, or noise in the spectral 
pattern while still recognizing its overall structure. This 
flexibility makes it advantageous for comparing complex or 
irregular patterns such as those found in M-type spectra, which 
often contain overlapping molecular bands. While the 
computational cost of Levenshtein is higher than KMP, its 
ability to quantify similarity rather than demand perfection 
provides a more robust and adaptable solution for the task of 
identifying stellar types based on spectral pattern matching. 
This approach enhances the accuracy of classification in 
situations where the spectrum may not be ideally clean or when 
comparing different stars within the same spectral class. 

E. Spectrum Data Representation 

To apply string matching algorithms to stellar spectra, it is 
first necessary to convert the analog spectral data into a digital 
format that can be processed algorithmically. A stellar 
spectrum is originally recorded as a continuous function 
representing light intensity as a function of wavelength, 
typically across the visible spectrum range of approximately 
400–700 nanometers. This data is sampled into discrete points 
to form an array of intensity values, each corresponding to a 
specific wavelength interval. In order to utilize string-based 
algorithms such as Knuth–Morris–Pratt (KMP) and 
Levenshtein distance, these numerical sequences must be 
transformed into symbolic strings. 

There are two principal approaches to digital 
representation: scaling to digits and symbolic binning. In the 
first approach, intensity values are multiplied by a constant 
scaling factor (e.g., 100) and rounded to the nearest integer, 
resulting in a sequence of numeric characters (e.g., 0.86 → 
"86"). These digit sequences are then concatenated into a single 
string, preserving relative intensity patterns while enabling 
character-wise comparison. The second approach involves 
binning the intensity values into qualitative categories—such 
as ‘A’, ‘B’, ‘C’, and ‘D’—based on predefined intensity 
thresholds. This symbolic representation reduces sensitivity to 
minor fluctuations and is especially useful for handling noise or 
variation in line depth and width. For instance, high-intensity 
regions may be labeled ‘A’, while deep absorption lines may 
be categorized as ‘D’, creating a discrete symbolic pattern that 
captures the general shape of the spectrum. In this paper, we 

will use the second method because it is more robust to tolerate 
the noise or redshift. 

This transformation process enables stellar spectra to be 
treated as sequences of characters, which can then be compared 
using classical string-matching algorithms. It preserves the key 
structural features of the spectrum such as the position and 
depth of absorption lines while abstracting away the precise 
numerical values that are often affected by observational noise. 

III. IMPLEMENTATION AND RESULT ANALYSIS 

A. Problem Mapping 

To implements their spectrum, we must understand that 

stellar spectra are composed of: 

• Wavelength (λ): A sequence of values, usually in 

nanometers (nm), representing the position of light in 

the electromagnetic spectrum (e.g., 400–700 nm for 

visible light). 

• Intensity (I): A normalized value (between 0 and 1) 

that represents how much light is received at each 

wavelength. Absorption lines appear as dips in this 

intensity. 

Each star type (e.g., A, G, M) has characteristic absorption 

lines, defined by: 

• Center wavelength (λ₀): The position of the line. 

• Amplitude: How deep the line dips below the 

continuum. 

• Width: How broad the line spreads around λ₀. 

Our goal is to simulate this data. After simulating the 

spectral data as continuous intensity values over a range of 

wavelengths, the next crucial step is to transform this 

numerical data into symbolic form. This transformation is 

necessary because string matching algorithms such as KMP 

and Levenshtein distance operate on sequences of discrete 

characters. 

To achieve this, the intensity values of the spectrum are 

discretized into bins, where each bin represents a range of 

normalized intensity values. The idea is rooted in the 

observation that absorption features appear as intensity dips in 

the spectrum, and these dips can be categorized by their depth. 

Last, we can then apply the algorithm into the transformed 

data. 

 

B. Data Simulation 

Before applying string matching algorithms to classify 

stellar types based on their spectra, we must first have the 

spectral data that reflects the properties of different types of 

stars. Unfortunately, obtaining a comprehensive set of real 

observational spectra that covers a wide and controlled variety 

of stellar types presents several challenges. While large-scale 

surveys such as SDSS and LAMOST have produced millions 

of stellar spectra, these datasets are still limited in terms of 

their representativeness for algorithmic experimentation. Real 

spectra vary in resolution, are affected by redshift and 

instrumental noise, and often contain incomplete or 
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ambiguous features due to observational constraints. More 

importantly, observational datasets rarely provide clean, ideal 

examples of each spectral class under uniform conditions, 

which makes them unsuitable as a baseline for evaluating 

algorithmic pattern recognition. 

There are thus two main difficulties in using real-world 

spectral data for this purpose. First, the data is often too large 

and complex to be processed directly using lightweight 

symbolic algorithms without heavy preprocessing or 

dimensionality reduction. Second, it is not structured in a way 

that supports controlled comparisons, since real spectra 

introduce noise, shifting features, and overlapping 

characteristics that make it difficult to isolate specific spectral 

types for evaluation. Fortunately, stellar spectra are governed 

by well-understood physical laws which can be used to 

generate synthetic spectra that represent real observations in 

idealized conditions. These simulations can be scaled and 

structured precisely to reflect the defining features of A, G, 

and M-type stars as described in the theoretical section. 

Therefore, in this inquiry, we simulate the spectral data 

using models that reflect the typical absorption behavior of the 

chosen stellar types. This enables us to create a dataset that is 

both representative of real stellar spectra and sufficiently 

simplified for algorithmic analysis, without the complications 

introduced by observational variability. 

To generate synthetic stellar spectra that resemble real 

observations, this study constructs each spectrum as a 

normalized continuum with absorption features. These 

features are mathematically modeled using Gaussian profiles, 

which approximate the shape and behavior of spectral 

absorption lines found in stellar atmospheres. The function 

responsible for generating each individual absorption line is 

defined as follows: 

def gaussian_absorption(wl, center, 

amplitude, width): 

    return 1 - amplitude * np.exp(-0.5 * 

((wl - center) / width) ** 2)) 

 

This function takes as input an array of wavelengths (wl), the 

central wavelength of the line (center), the amplitude (how 

deep the absorption line dips), and the width (how broadly the 

feature spreads). It returns an intensity curve where a 

Gaussian-shaped dip is subtracted from a baseline intensity of 

1, to simulate how light is absorbed at specific wavelengths in 

a star’s atmosphere. 

 

The full spectrum of a given star type is generated using the 

following function: 

def simulate_star_spectrum(wl_range, 

lines, noise=0.005): 

    wl = np.linspace(*wl_range, 1000) 

    spectrum = np.ones_like(wl) 

    for line in lines: 

        center, amp, width = line 

        spectrum *= 

gaussian_absorption(wl, center, amp, 

width) 

    spectrum += np.random.normal(0, 

noise, wl.shape) 

    return wl, spectrum 

This function begins by creating an evenly spaced wavelength 

array wl (which its value when called will be from 400 to 700 

to represent visible light spectrum). A flat continuum 

(spectrum) is initialized with intensity values of 1.0 across all 

wavelengths. Then, for each absorption line defined in the 

lines list, the gaussian_absorption function is applied 

multiplicatively to the spectrum. This models the cumulative 

effect of all absorption lines on the continuum. Finally, 

Gaussian noise is added to each intensity value, simulating the 

random variations and imperfections commonly observed in 

real astronomical instruments. 

Then, based on theoretical basis, there are unique criteria for 

each spectrum class, which represent the chemical contents of 

a star.  

 

a_type_lines = [ 

    (656.3, 0.4, 1),  

    (486.1, 0.3, 1.2),  

    (434.0, 0.2, 1.5) 

] 

g_type_lines = [ 

    (589.0, 0.15, 0.8),  

    (517.0, 0.1, 0.6),  

    (486.1, 0.1, 1.2) 

] 

m_type_lines = [ 

    (705.0, 0.2, 2),  

    (620.0, 0.15, 2),  

    (575.0, 0.15, 1.5) 

] 

Using all functions made above, we then call the 

simulate_star_spectrum function 

wl_range = (400, 700) 

 

wl, spec_A = 

simulate_star_spectrum(wl_range, 

a_type_lines) 

_, spec_G = 

simulate_star_spectrum(wl_range, 

g_type_lines) 

 

_, spec_M = 

simulate_star_spectrum(wl_range, 

m_type_lines) 

 

The simulated data can be visualized as: 
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C. Spectral Data Transformation 

To apply string matching to the spectral data, we should 
transform the data. This technique, often referred to as 
symbolic representation, converts continuous spectral data into 
a string composed of discrete symbols representing varying 
levels of absorption. We implement this as follows: 

def 

stringify_spectrum_bins(intensity_array): 

    def bin_intensity(i): 

        if i > 0.9: return 'A' 

        elif i > 0.8: return 'B' 

        elif i > 0.7: return 'C' 

        else: return 'D' 

     

    return ''.join(bin_intensity(i) for 

i in intensity_array) 

 

The function defines bin_intensity(i), a nested classification 
function that maps each intensity value i to a symbol: 'A' for 
high intensity (i.e., minimal absorption), 'B' for mild 
absorption, 'C' for moderate absorption, and 'D' for deep 
absorption. Specifically, the binning thresholds are defined as 
follows: 'A' for values above 0.9, 'B' for 0.8–0.9, 'C' for 0.7–
0.8, and 'D' for values less than or equal to 0.7. These threshold 
values is a heuristic discretization of the normalized intensity 
scale, where 1.0 represents the continuum (no absorption) and 
values closer to 0 indicate stronger line absorption. The 
function processes the entire intensity_array. 

D. Knuth-Morris-Pratt Algorithm Implementation 

After transforming the spectral data, we then can implement 
the Knuth-Morris-Pratt Algorithm. First, we generate the 
border function: 

def generate_border_function(pattern): 

border_function = [0] * len(pattern) 

length = 0 

i = 1 

while i < len(pattern): 

 if pattern[i] == pattern[length]: 

   length += 1 

   border_function[i] = length 

   i += 1 

 else: 

   if length != 0: 

     length = border_function[length - 

1] 

   else: 

      border_function[i] = 0 

     i += 1 

return border_function 

Then, we implement the KMP algorithm like this: 

def kmp_search(text, pattern): 

border_function= 

generate_border_function(pattern) 

i = j = 0  

while i < len(text): 

 if text[i] == pattern[j]: 

   i += 1 

   j += 1 

 if j == len(pattern): 

   return i - j   

 elif i < len(text) and text[i] != 

pattern[j]: 

   if j != 0: 

     j = border_function[j - 1] 

   else: 

     i += 1 

return -1 

Last, we can use use the the kmp_search we made before as 
follows: 

input_str= 

transform_spectrum(crop_spectrum(wl, 

spec_A, 480, 10))   

 

pattern_str= 

transform_spectrum(crop_spectrum(wl, 

spec_A, 486.1, 1))  

 

print("Input  :", input_str) 

print("Pattern:", pattern_str) 

 

found= kmp_search(input_str, pattern_str 

) 

if found != -1: 

  print("Pattern found at index", found) 

else: 

  print("Pattern not found." 

The result is: 

Input: 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAABBBCCDCCCCBBAAAAAAA 

 

Pattern: CCDCCCC 

 

Pattern found at index 50 

Fig 1. Simulated Stellar Spectra 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

E. Levenshtein Algorithm Implementation 

We then now can apply the Levenshtein algorithm to search 
(fuzzy match) the pattern of G spectral type stellar in the 
simulated data of A spectral type stellar. 

_, spec_G = simulate_star_spectrum((400, 

700), g_type_lines) 

pattern_G = 

transform_spectrum(crop_spectrum(wl, 

spec_G, 486.1)) 

 

input_str = transform_spectrum(snippet) 

 

score = levenshtein(input_str, pattern_G) 

 

print("Similarity to G-type:", score) 

 

The output is as follows: 

Similarity to G-type: 0.33962264150943394 

It means that the simulated data is not really similar to G 
spectral type stellar which as we expected. Now, we use the 
same way but now the simulated data is of G spectral type 
stellar. The outpus shows as follows: 

Similarity to G-type: 0.7547169811320755 

It means that the simulated data is similar to G spectral type 
stellar which we expected. 

IV. CONCLUSION 

From the implementation of the string-matching strategy, 
the KMP algorithm successfully identified the target spectral 
pattern CCDCCCC which represents the absorption profile of a 
G-type star at index 50 within the symbolic spectrum of a 
simulated G-type star. This confirms that exact pattern 
matching can detect distinct spectral fingerprints under ideal 
conditions. For a more tolerant evaluation, the Levenshtein 
distance algorithm was applied. When comparing the symbolic 
spectrum of an A-type star to the G-type pattern, the resulting 
similarity was only 33.96%, whereas the G-type star's 
similarity to the same pattern reached 75.47%. This significant 
difference confirms the capability of Levenshtein algorithm to 
distinguish between spectral types even in the presence of noise 
and overlapping features. Therefore, it can be concluded that 
this inquiry successfully demonstrates the feasibility of using 
string matching algorithms for stellar spectral classification. 
Further development and evaluation with more diverse patterns 
and real data will be discussed in the next section. 

V. RECOMMENDATION 

Based on the simulated spectra, string matching algorithms 
such as KMP and Levenshtein distance were able to distinguish 
stellar spectral types by identifying characteristic absorption 
patterns. It will be a development in further research if we 
apply this method to real spectral data from astronomical 

surveys such as SDSS or LAMOST. That research would serve 
as a verification of this paper—whether the symbolic matching 
strategy remains valid under real observational noise and 
spectral resolution. After all, using real spectra will require 
additional steps, especially in preprocessing and normalization 
to convert raw data into symbolic form. Further research on 
optimizing the stringification process or learning the symbolic 
bins automatically from data would also be a valuable 
recommendation for future refinement. 
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